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Is a co-jump in prices a sparse jump? 
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A B S T R A C T   

Systematic co-jumps in asset prices are generally thought to account for only a small proportion of 
overall jumps. In actual observations, however, jumps in asset prices are often persistent, and the 
time of persistence varies. In this context, we develop a new rule to identify co-jumps and 
improve traditional tests by considering different sampling frequencies and different sampling 
starting points to re-evaluate the occurrence rate of systematic co-jumps in financial assets. We 
conduct a simulation experiment to show that the current test procedures generally underesti-
mate the number of co-jumps when considering persistence, but that the proposed procedure can 
identify co-jumps more accurately. We also perform an empirical analysis using price data from 
the Shanghai 50 Index and its 25 constituent stocks in China’s stock market. The average pro-
portion of systematic co-jumps detected by the improved s-BNS is approximately 30%, which 
shows that the co-jump and even the systematic co-jump are not sparse jumps. The results also 
reveal the shortcomings of traditional jump tests in estimating persistent jumps and demonstrate 
that the proposed method can better detect the possible nondiversifiable risks between market 
indices and their constituent stocks, thereby contributing to financial risk management.   

1. Introduction 

Financial prices are usually characterized as a combination of continuous and discontinuous processes, where the discontinuous 
part generally refers to jumps caused by sudden changes in prices (Andersen et al., 2007; Back, 1991; Merton, 1976; Press, 1967). Das 
and Uppal (2004) defined the infrequent discontinuous process that occurs across multiple assets simultaneously as a cojump (similar 
statements about co-jumps can be found in Dungey et al., 2009; Dungey & Hvozdyk, 2012; Lahaye et al., 2011). Since co-jumps are 
closely related to financial market crashes and other systemic risks, accurately detecting co-jumps is of great significance in preventing 
financial risks. Gilder et al. (2014) defined the co-jumps between a stock and the market portfolio as systematic co-jumps. Since the 
stock index is essentially a portfolio of its constituent stocks, co-jumps that occur between a constituent stock and the index are referred 
to as systematic co-jumps in this study. These systematic jumps reflect the synchronization of risk between individual stocks and the 
index, which is an important indicator that investors need to consider when making decisions. The existing tests of co-jumps are mainly 
divided into two steps. The first step involves using techniques such as the BNS method (Barndorff-Nielsen, 2004; Barndorff-Nielsen & 
Shephard, 2006), ABD test (Andersen et al., 2007), L-M test (Lee & Mykland, 2008), s-BNS method (Andersen et al., 2010) and TOD 
method (Bollerslev et al., 2013) to identify jumps in individual asset or stock prices. The second step is to determine whether the 
identified jumps in different assets are co-jumps or just heterogeneous jumps resulting from the coexceedance rule proposed by Gilder 
et al. (2014) or some other derivative rules (Clements & Liao, 2017). Specifically, the traditional method to define a co-jump can be 
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summarized as follows: when the prices of two or more assets change drastically within the same observation interval, it is referred to 
as a co-jump. The implicit assumption is that co-jumps occur synchronously or at least approximately synchronously over a small 
observation interval. The traditional methods generally take the starting moments of these jumps as the basis for judgment. 

However, we found that due to the impact of the same emergency, most financial price series will undergo persistent jumps, and the 
time of persistence for these jumps usually varies. We take the Shanghai 50 Index (SH000016) during the period from June to August 
2015, when the stock crash occurred in China’s market, as an example. The first row of Fig. 1 visualizes the 5-minute price series of the 
Shanghai 50 Index from 15:00 on June 11 to 15:00 on August 26 and marks four price processes that show a cliff-shaped decline over a 
short time span. We can clearly see that the several sudden changes in prices are noninstantaneous. The second row zooms in to show 
the complete process of these four price jumps, each of which has a different time window of persistence. If a fixed sampling frequency 
is used, then the four jump processes cannot be completely captured. We mark the intervals within each jump process that could be 
considered a jump at a sampling frequency of 5 min, and none of these intervals can fully reflect the persistent risk faced by the asset. 
This means that there are certain disadvantages to using a fixed sampling frequency to detect jumps with persistence, and the 
determination of persistence may rely on the frequency of sampling. If the persistence of jumps is ignored when there exists a certain 
time lag between these jumps, the number of co-jumps detected by traditional rules will be underestimated to a large extent, thus 
underestimating the level of systematic risk. 

In general, the existing empirical research on co-jumps shows that the proportion of systematic co-jumps is relatively low, while the 
occurrence of heterogeneous jumps accounts for the majority of all jumps. Gilder et al. (2014) found that less than 18% of jumps across 
underlying stocks and market portfolios were systematic co-jumps. Wang et al. (2015) detected intraday co-jumps in China’s spot and 
futures markets and found that only approximately one-third of these detected jumps were co-jumps. Clements and Liao (2017) 
believed that a co-jump only occurs when more than half of the 30 constituent stocks jump at the same time. The empirical results show 
that on average, approximately 4.1% of the intraday interval contains daily co-jumps. Arouri et al. (2019) identified the intraday jumps 
of three international exchange-traded funds and found that at the daily level, the proportion of co-jumps in each pair of the three funds 
is less than 30%. However, this conclusion positing the low frequency of co-jumps may not be robust. Russell and Engle (1998) pointed 
out that for discrete data that do not arrive within equal time intervals, such as a financial price series, certain errors will be generated 
if a fixed sampling frequency and starting point are used for analysis. When estimating price volatility, considering that price fluc-
tuations do not regularly occur within a fixed interval, traditional methods also result in bias. Cho and Frees (1988) and Gerhard and 
Hautsch (2002) both proposed improved price volatility estimators. Similarly, as mentioned above, traditional jump tests based on 
high-frequency data are usually constructed under an instantaneous jump assumption has been made, which means that they are 
greatly affected by the sampling frequency and sampling starting point (Andor & Bohák, 2017). Motivated by our observations, we 
firmly believe that the techniques for identifying co-jumps should be improved by considering the persistence of jumps and sampling 

Fig. 1. The time of persistence of four jumps. The first row shows the 5-minute price series of the SSE 50 during the stock market crash, and the 
dotted line marks four persistent jumps that occurred during Jun 27, Jul 28 and Aug 22 in 2014. The second row zooms in on the complete process 
of these four price drops, which can more intuitively show that the time windows of these four persistent jumps are 15 min, 25 min, 25 min, and 40 
min, respectively. To capture these jumps completely, the required sampling frequencies are 15 min, 25 min, 25 min, and 40 min. The red line marks 
price change that might also be detected as a jump in this subprocess at a sampling frequency of 5 min, but these price changes fail to reflect the 
persistent risk faced by the asset. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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these jumps with different frequencies and start points. 
In this article, we redefine the rules for classifying a co-jump, which allow for jumps that do not occur at the same time and have 

different levels of persistence to still be detected as co-jumps under certain conditions. This definition better reflects the actual dy-
namics of the financial market, thus reducing the possibility of underestimating systematic risks. Andor and Bohák (2017) proposed 
the multisample BNS method (also called multisample BPV) and found that it could increase the event (persistent jump) detection rate 
by a factor of three compared with traditional BNS methods. Inspired by Andor and Bohák (2017), we first reveal the limitations of the 
traditional jump tests by changing the sampling starting point and sampling frequency. Then, we improve the s-BNS, LM and TOD 
methods by considering jump persistence at the intraday level in jump detection. We also update the rule for identifying co-jumps and 
thus propose a complete procedure with which to test jumps and cojumps. The results show that the proposed scheme can detect more 
systematic co-jumps, which indicates that there may be a higher degree of risk synchronization between individual stocks and the 
market index. From the perspective of risk management, this nondiversifiable risk deserves more attention from investors since 
market-level news can result in more systematic shocks than was previously expected. 

2. Methods 

This study focuses on the test results of co-jumps, which first requires the identification of jumps in the price series of individual 
assets and then uses specific rules to determine which jumps occurring in multiple assets can be regarded as co-jumps. In this section, 
we first introduce several traditional tests for detecting intraday jumps, and then we propose an improved procedure for (co-)jump 
detection, which applies the method that expands the detection of traditional jumps to include persistent jumps and updates the rule 
for identifying co-jumps when jump persistence is considered. 

2.1. BNS and s-BNS tests 

The original BNS test method (Barndorff-Nielsen, 2004) assumes that the jump component in the price process is instantaneous, 
that is, a jump only has a transient impact on the price. Therefore, it is often characterized by a compound Poisson process. Corre-
spondingly, the price p(t) is a semimartingale process within the general jump-diffusion setting: 

dp(t) = μ(t)dt + σ(t)dW(t) + J(t)dN(t), (1)  

where μ(t) and σ(t) indicate the annual return and the covariance matrix of the price. dt is the unit time step relative to the year, and 
J(t) is the jump component.W(t) and N(t) represent the Brown process and Poisson process, respectively. 

Barndorff-Nielsen et al. (2004) considered the bipower variation measure of daily return, BVT, as a consistent estimate of the 
population variance of the price process. Therefore, the contribution of jumps to population variance can be estimated as the difference 
between realized volatility and bipower variation, namely, RVT − BVT. We denote the corresponding statistics of jump as ZBNS,T and 

ZBNS,T →D N(0,1). This can be defined as: 

ZBNS,T =

1 −
BVT
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Where i denotes the ith high-frequency moment in day T, and there are M high-frequency returns within a day. The returns 
mentioned in this article default to logarithmic returns, which are defined as the difference between logarithmic prices, i.e., rTi =

logPTi − logPTi− 1 , where P represents the asset price. 
However, the method can only detect jumps at the daily level. S-BNS (Andersen et al., 2010) extends the BNS test to identify 

intraday jumps. This method indicates that after using the BNS test to determine the day on which the jump occurs, if i intraday jumps 
are detected by the relatively largest i returns during the day, the remaining M − i returns on this day are scaled by M/(M − i) to 
calculate the adjusted volatility and produce the updated BNS statistics. This procedure is repeated until the statistics no longer reject 
the null hypothesis that there is no jump. 

2.2. L-M test 

Lee and Mykland (2008) proposed a new method for detecting jumps as follows: when determining whether a jump has occurred at 
time Ti, the K observations before Ti are considered to estimate realized bipower variation as instantaneous volatility. The ratio of the 
return at Ti to the estimated instantaneous volatility is used as the L-M statistic and serves as the basis to check whether a jump 
occurred at Ti and if so, the size of the jump. If time Ti corresponds to the θth observation, the L-M statistic can be expressed as: 

L(Ti) =
logPTi − logPTi− 1

ρ̂(Ti)
, (3) 
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where ρ̂(Ti)
2
= 1

K− 2
∑θ− 1

j=θ− K+2|logPTj − logPTj− 1 ||logPTj− 1 − logPTj− 2 |.K is a self-defined parameter. Lee and Mykland (2008) suggested that 
the value of K should be within the range of 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
252*M

√
to 252*M, where M is the number of high-frequency returns in a day. Assuming 

that there are φ trading days in a fixed time horizon, then the total number of observations will be N = φ*M. If L (Ti) satisfies 
|L (Ti) |− CN
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> − log(− log(1 − α)), where CN =
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and α denote the confidence level, then the 

null hypothesis that there is no jump at time Ti is rejected. 

2.3. TOD test 

TODi measures the ratio of the diffusive variation of the ith (i = 1,⋯,M) moment of the day relative to its average value for the day. 
The series of TOD,{TODi}

M
1 , generally exhibits an intraday U-shaped structure as a function of i over trading day (Bollerslev et al., 

2013). TODi is then used to adjust the criteria threshold to determine jumps of each time interval in a day, which can be expressed as: 

TODi =
M
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where ∊ > 0, ϖ ∈ (0, 0.5) and I(⋅) are indicative functions. TODi measures the average of high-frequency returns at the i th moment in 
the day relative to daily returns. ϖ and ∊ are usually set to the empirical values of 0.49 and 2.5. Hence, the critical value for judging 
whether a jump occurs in the s th moment will be η = ∊

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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√
M− ϖ , s = 1, 2,⋯, MT. If |rs| ≥ η, then a jump is 

considered to have occurred at this moment, and vice versa. 

2.4. The improved procedure of (co-)jump detection 

As mentioned earlier, all the above traditional tests are proposed based on the price model that views jumps as instantaneous 
components, which clearly contradicts our actual observation of jumps. Andor and Bohák (2017) proposed a multisample BNS method 
that considers the impact of sampling frequency and sampling starting point and redefined the critical value of the new statistics. This 
method calculates the BNS statistics under different sampling frequencies and sampling starting points for each day. If the maximum 
BNS statistic in a day is greater than the critical value, then a jump can be considered to have occurred on that day. This can precisely 
identify jumps that are not detected by traditional BNS due to the fixed sampling frequency and starting point. Thus far, we can see that 
the traditional BNS has room for improvement. However, the traditional L-M and TOD can hardly be improved in a similar way since 
the latter two detect intraday jumps rather than daily jumps. For consistency, we will introduce a unified approach to improving the 
procedure of jump detection and co-jump detection under traditional jump tests by accounting for jump persistence. Meanwhile, we 
provide a conceptual definition of the time of jump persistence and introduce a method for estimating the time of jump persistence that 
relies on the results of jump tests reported in this section. 

Based on this phenomenon, we simply define the time of jump persistence as the time it takes for an individual jump to unfold, from 
initial occurrence to decay to the end. In light of multisample BNS, the key to not underestimating risk is to traverse every small time 
unit and determine whether a jump has occurred at this time point. Specifically, to avoid underestimating risks due to a the low 
sampling frequency of returns and to avoid market microstructure noise due to the high sampling frequency of returns, it is necessary 
to choose a minimum suitable sampling interval, τ*. Under this frequency, the traditional tests referenced above are used to detect 
jumps. If jumps in the same direction occur continuously, they can be regarded as an individual jump with a persistent process . If the 
number of consecutive jumps in the same direction is g, then the time of jump persistence is τ = τ*g. Hence, these approaches are 
referred to as improved s-BNS, improved L-M and improved TOD methods. 

Since the identification of jumps has been improved, the rule for determining co-jumps should be updated accordingly. The 
traditional technique proposed by Gilder et al. (2014) to detect co-jumps is referred to as the coexceedance rule, 

∑N

j=1
I
(
JumpTi ,j > 0

)
{

≥ 2Cojump,

≤ 1NoCojump,
(5)  

where JumpTi ,j denotes the number of jumps at moment i on day T in the jth asset among N assets, indicating that co-jumps should occur 
within the same time interval; otherwise, they are heterogeneous jumps. However, we believe that if the time of persistence of several 
jumps with the same direction overlaps, a co-jump can be considered to have occurred. The updated rule determines whether a co- 
jump occurs by observing whether the time of persistence of jumps with the same direction in a jump series of any two assets over-
lap. We denote the arrival time of the qth jump in asset m on day T as Tq and denote the time of persistence of this jump as τT,q,m. 
Accordingly, the arrival time of the q′th jump in asset n on day T is denoted as Tq, and the time of persistence of this jump is denoted by 
τT,q′ ,n. This rule can be expressed as 

I
(
{[Tq,Tq + τTq ,m]∩

[
Tq′ ,Tq′ + τT,q′ ,n]} ∕= ∅

)
*I
(
SignT,q,m = SignT,q′ ,n

)
{

= 1Cojump,

= 0NoCojump,
# (6) 
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where SignT,q,m and SignT,q′ ,n indicate the sign of the jump, and [a, b] represents the time range starting from a and ending at b. 

3. Simulation analysis 

We conduct a simple Monte Carlo simulation to illustrate the shortcomings of traditional tests that ignore jump persistence in 
detecting co-jumps. The model that includes jumps with persistence is also discussed in the work of Song and Li (2022), and we will 
refer to the price mechanism referenced in this paper for simulations. The stochastic differential equation form of the price model can 
be expressed as follows: 

dp(t) = μ(t)dt + σ(t)dW(t) + J′(t)dN(t), (7)  

where J′(t) represents the size of the jump component of a persistent jump, rather than an instantaneous jump, at moment t. Specif-
ically, this price process can be considered to be a superposition of an ordinary Brownian motion process and a filtered Poisson process. 
The so-called filtered Poisson process defines each arrival event that obeys the Poisson distribution as not being instantaneous but 
rather having a certain persistence. That is, the jump component driven by the filtered Poisson process has a persistent impact on the 
price. Additionally, the degree of impact generally decays with time. Based on the dynamics of the price mentioned above, we apply a 
Monte Carlo simulation to generate the price series of two assets. We assume that the unit step of the series is 1 min and the number of 
trading days is 100. Since there are 240 trading minutes on each day in China’s stock market, we generate 24,001 simulated prices and 
thus obtain 24,000 1-minute returns. Table 1 lists the parameters involved in the simulation and their range of values. 

Neglecting the years with significant systematic risk, we obtain an average annual return of approximately 0.10 and an annual 
volatility of approximately 0.22 based on 8 years of historical price data of the SSE Composite Index ranging from 2009 to 2016. 
Therefore, we set the annual return to 0.1 and the annual volatility to 0.2 in the simulation. We refer to individual stock price data from 
the actual Chinese market, such as the constituents of the SSE 50, which is formally introduced in the empirical section, to determine 

Table 1 
Parameter setting of Monte Carlo simulation.  

Parameter Value 

Annual return 10% 
Annual volatility 20% 
Initial price U(500,1000)
Probability of heterogeneous jumps 0.00025 for positive jumps 

0.00025 for negative jumps 
Probability of co-jumps 0.0005 for positive co-jumps 

0.0005 for negative co-jumps 
Size A of the initial jump component of the positive persistent jump N(5,1)
Size A′ of the initial jump component of the negative persistent jump N(8,1)
The time of jump persistence τ U(10,20)
The decay process of the jump component Aexp( − t), t = 0,1, 2,⋯, τ for the positive persistent jump 

A′ exp( − t), t = 0,1,2,⋯, τ, for the negative persistent jump  

Fig. 2. The U-shaped pattern of intraday returns.  
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parameters such as the initial price of stocks and the initial size of persistent jumps. To avoid the price being less than 0 due to random 
wandering during the simulation, the initial price should be set to a higher value. Considering that the stock prices of the constituent 
stocks fluctuate between a few Chinese Yuan and over a thousand Chinese Yuan, the initial prices of the two series are set to follow a 
uniform distribution on [500, 1000]. Campbell and Hentschel (1992), Bollerslev, Litvinova, and Tauchen (2006), and Dennis, 
Mayhew, and Stivers (2006) showed stronger volatility for negative returns than for positive returns. This asymmetric volatility of 
returns results in a higher average size of negative jumps than of positive jumps in the real market. In the simulation, for simplicity, we 
assume that the size of the initial jump component of the persistent jump in these two simulated price series obeys a normal distri-
bution with the same parameters. The results of the traditional jump tests for each constituent stock in SSE 50 in 2014 also provide a 
hint as to the relative relationship between the size of jumps and prices. When using a 5-minute sampling frequency, the average size of 
the positive jumps is approximately 0.005 to 0.01 of the average price series, and the average size of the negative jumps is approx-
imately 0.008 to 0.016 of the average price series. When the initial price ranges from 500 to 1000, the size A of the initial jump 
component of positive persistent jumps is set to follow a normal distribution with a mean of 5 and a standard deviation of 1. The size A′

of the initial jump component of negative persistent jumps is set to follow a normal distribution with a mean of 8 and a standard 
deviation of 1. Under this setting, the mean values of 5 and 8 in the normal distribution ensure that the relative relationship between 
the initial size of the jump and the price is consistent with the actual situation. Setting a standard deviation of 1 ensures that there is 
only a near-zero probability that the size of the initial jump components will be less than 0 during the sampling process. 

For the probability of occurrence of jumps, assuming that there is a 0.0005 probability of heterogeneous jumps in both assets, the 
probability of positive jumps and negative jumps is 0.00025. It is assumed that there are certain co-jumps in the two assets, and that the 

Asset 2

Asset 1

0 5000 10000 15000 20000 25000
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700

800

600

700

800

time

pr
ic

e

Simulated price series of two assets

Fig. 3. The simulated price series of two assets. The co-jumps simulated in the two assets are marked with red dots, and the co-jump of asset 2 lags 
behind that of asset 1 by 5 time steps. 

Table 2 
Test results of co-jumps in simulated price series.  

Method Sampling frequency The average number of real co-jumps The average number of detected co-jumps The average detection rate of co-jumps 

s-BNS 5 min 25 9  35.54% 
10 min 25 4  15.80% 
20 min 25 2  7.97% 
improved 25 18  71.30%  

TOD 5 min 25 7  27.40% 
10 min 25 6  23.33% 
20 min 25 4  15.35% 
improved 25 15  59.87%  

L-M 5 min 25 3  11.66% 
10 min 25 4  15.55% 
20 min 25 2  7.71% 
improved 25 8  31.75% 

Note: the average jump detection rate is not the ratio of the average number of detected jumps to the average number of real jumps. 
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probability of occurrence of positive and negative co-jumps are both 0.0005, which are set slightly higher than that of heterogeneous 
jumps to ensure an obvious result of the co-jump test. Therefore, the total jump intensity of a simulated stock is set to 0.0015, which is 
in line with that of a real stock. Meanwhile, both the heterogeneous jumps and the co-jumps are set to be persistent since such overlap 
may also be persistent when there is an overlap between the jump intervals of the two stocks. The decay process of jumps is assumed to 
obey a simple exponential process. Since we test at sampling frequencies of 5, 10, and 20 min and strive to avoid identifying 
consecutive jumps as discontinuous individual jumps due to a fast decay process, we make the time span of jump persistence obey a 
uniform distribution [10, 20]. Additionally, we intend to show that the test method proposed in this paper can detect co-jumps with 
inconsistent starting points, so we assume that there exists a lag of 5 min in the co-jumps that occur between the two stocks. 

A peculiar intraday U-shaped pattern in returns has been found in many studies (Wood, McInish, & Ord 1985; Harris 1986). We 
calculate the average return corresponding to the 240 high-frequency moments of the day based on actual data from the SSE Composite 
Index in 2014 and use the U-shaped structure fitted to this average return series as the cyclical structure to be used in the simulation 
series. Subgraph (a) in Fig. 2 shows the fitted results, and subgraph (b) displays the extracted intraday U-shaped pattern from (a). Fig. 3 
displays the price series of the two assets in one of the simulations with the co-jumps marked. 

At sampling frequencies of 5 min, 10 min and 20 min, the traditional s-BNS test, TOD test and L-M test are used to test for co-jumps 
in the simulation series. Then, the improved s-BNS, as well as the improved TOD and L-M tests, are combined with the proposed 
updated rule to detect these co-jumps. These improved tests use 2 min as the minimum sampling frequency. We perform 10,000 
simulations and list the average test results of each method on the co-jumps displayed in Table 2. 

Fig. 4. Jump detection at 5-minute and 2-minute sampling frequencies for the partial data of sh600104 by s-BNS. The identified jumps at 2-minute 
and 5-minute sampling frequencies are marked in blue and red, respectively. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 5. Density plots of the average time of jump persistence.  
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Table 2 indicates that under the traditional rule for identifying co-jumps, the number of co-jumps detected by traditional methods 
using a fixed sampling frequency is much lower than the number of actual co-jumps that we simulated. The average ratio of the 
detected co-jumps to the actual co-jumps hardly exceeds 40%, revealing that the traditional co-jump tests greatly underestimates the 
common risk and even underestimates the systematic risk. Under the updated rule for identifying co-jumps, the improved s-BNS, TOD 
and L-M tests can be used to correctly identify more co-jumps, and the former two gain an advantage over the latter in terms of ac-
curacy and stability. The improved s-BNS correctly identifies 71.30% of the co-jumps on average, followed by the improved TOD, 
which identifies approximately 59.87% of the co-jumps. The results of the simulation experiment indicate that when jumps with 
persistence occur, the test procedure proposed in this study can be used to show its strength, while traditional tests urgently need to be 
improved (see Fig. 4). 

4. Empirical results 

The Shanghai Stock Exchange 50 Index (SSE 50 Index) is a selection of the 50 most representative stocks in the Shanghai stock 
market with large scale and good liquidity, and it is used to form sample stocks. We regard the SSE 50 Index in 2014 as a proxy for the 

Table 3 
Cojump identified by BNS Test.  

Stock 5 min 10 min 20 min  

Number 
of jumps 

Number of 
Systematic 
Co-jumps 

Ratio of 
Systematic 
Co-jumps 

Number 
of jumps 

Number of 
Systematic 
Co-jumps 

Ratio of 
Systematic 
Co-jumps 

Number 
of jumps 

Number of 
Systematic 
Co-jumps 

Ratio of 
Systematic 
Co-jumps 

SH000016 9   4   0   
SH600009 5 0  0.00% 2 0  0.00% 0 0 / 
SH600016 7 1  14.29% 3 0  0.00% 0 0 / 
SH600028 5 0  0.00% 7 0  0.00% 0 0 / 
SH600030 3 0  0.00% 3 1  33.33% 0 0 / 
SH600036 7 2  28.57% 1 0  0.00% 1 0 0.00% 
SH600048 8 0  0.00% 4 1  25.00% 0 0 / 
SH600050 9 1  11.11% 4 1  25.00% 0 0 / 
SH600104 4 0  0.00% 5 1  20.00% 0 0 / 
SH600519 9 1  11.11% 5 0  0.00% 0 0 / 
SH601166 5 0  0.00% 3 1  33.33% 0 0 / 
SH600029 12 2  16.67% 11 1  9.09% 0 0 / 
SH600887 6 1  16.67% 5 0  0.00% 0 0 / 
SH601688 12 1  8.33% 5 0  0.00% 1 0 0.00% 
SH601901 14 2  14.29% 4 1  25.00% 1 0 0.00% 
SH601169 9 0  0.00% 5 0  0.00% 0 0 / 
SH601328 5 0  0.00% 2 0  0.00% 0 0 / 
SH601628 11 0  0.00% 2 0  0.00% 0 0 / 
SH601766 3 0  0.00% 4 1  25.00% 0 0 / 
SH601818 5 0  0.00% 7 0  0.00% 0 0 / 
SH600111 3 1  33.33% 2 0  0.00% 0 0 / 
SH600837 13 0  0.00% 7 0  0.00% 0 0 / 
SH601088 12 0  0.00% 7 1  14.29% 0 0 / 
SH601186 9 0  0.00% 6 0  0.00% 0 0 / 
SH601336 11 0  0.00% 4 1  25.00% 0 0 / 
SH601398 16 0  0.00% 14 1  7.14% 0 0 / 
Average 8 0  6.17% 5 0  9.69% 0 0 0.00% 

Note: the average number of jumps and systematic co-jumps are rounded. 

Table 4 
Jumps in SSE 50 identified through BNS using both a fixed sampling starting point and traversed starting point.  

Sampling frequency Original BNS BNS with traversed starting point 

1 min 78 78 
2 min 27 39 
3 min 25 29 
4 min 17 20 
5 min 9 12 
6 min 5 9 
8 min 3 4 
10 min 4 4 
12 min 1 3 
15 min 1 1 
16 min 1 1 
20 min 0 0 
24 min 0 0 
30 min 0 0  
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Table 5 
Co-jump identified using the traditional test procedure.  

Method Stock 5 min 10 min 20 min 

Number of 
jumps 

Number of 
Systematic Co-jumps 

Ratio of Systematic 
Co-jumps 

Number of 
jumps 

Number of 
Systematic Co-jumps 

Ratio of Systematic 
Co-jumps 

Number of 
jumps 

Number of 
Systematic Co-jumps 

Ratio of Systematic 
Co-jumps 

Original s- 
BNS 

SH000016 188   103   55   
SH600009 152 33  21.71% 144 22  15.28% 74 10  13.51% 
SH600016 302 31  10.26% 131 28  21.37% 82 19  23.17% 
SH600028 376 32  8.51% 187 23  12.30% 109 19  17.43% 
SH600030 293 77  26.28% 125 37  29.60% 63 20  31.75% 
SH600036 285 54  18.95% 118 24  20.34% 97 11  11.34% 
SH600048 299 50  16.72% 123 20  16.26% 79 20  25.32% 
SH600050 246 52  21.14% 136 21  15.44% 126 9  7.14% 
SH600104 265 41  15.47% 144 24  16.67% 79 11  13.92% 
SH600519 254 43  16.93% 129 26  20.16% 86 13  15.12% 
SH601166 301 44  14.62% 145 24  16.55% 94 13  13.83% 
SH600029 266 56  21.05% 197 29  14.72% 155 12  7.74% 
SH600887 268 39  14.55% 116 39  33.62% 76 20  26.32% 
SH601688 315 41  13.02% 177 20  11.30% 126 13  10.32% 
SH601901 312 64  20.51% 183 32  17.49% 108 15  13.89% 
SH601169 232 54  23.28% 169 33  19.53% 132 14  10.61% 
SH601328 264 40  15.15% 132 31  23.48% 104 17  16.35% 
SH601628 253 35  13.83% 116 23  19.83% 89 14  15.73% 
SH601766 299 43  14.38% 165 19  11.52% 125 12  9.60% 
SH601818 366 49  13.39% 184 26  14.13% 108 18  16.67% 
SH600111 232 76  32.76% 119 24  20.17% 89 16  17.98% 
SH600837 201 30  14.93% 128 18  14.06% 91 18  19.78% 
SH601088 223 33  14.80% 232 16  6.90% 167 17  10.18% 
SH601186 267 46  17.23% 176 36  20.45% 132 21  15.91% 
SH601336 316 52  16.46% 156 28  17.95% 101 22  21.78% 
SH601398 212 44  20.75% 197 21  10.66% 163 14  8.59% 
Average 269 46  17.47% 151 26  17.59% 104 16  15.76%  

Original L- 
M 

SH000016 46   18   13   
SH600009 71 5  7.04% 44 2  4.55% 28 1  3.57% 
SH600016 266 16  6.02% 232 9  3.88% 71 5  7.04% 
SH600028 345 7  2.03% 301 2  0.66% 78 4  5.12% 
SH600030 126 24  19.05% 106 10  9.43% 55 11  20.00% 
SH600036 244 20  8.20% 149 11  7.38% 70 10  14.28% 
SH600048 314 17  5.41% 236 10  4.24% 87 8  9.19% 
SH600050 573 11  1.92% 559 6  1.07% 258 6  2.32% 
SH600104 237 27  11.39% 171 12  7.02% 108 8  7.40% 
SH600519 259 19  7.34% 214 11  5.14% 123 9  7.31% 
SH601166 302 33  10.93% 229 14  6.11% 131 12  9.16% 
SH600029 117 6  5.13% 87 3  3.45% 57 3  5.26% 
SH600887 189 17  8.99% 83 6  7.23% 48 4  8.33% 
SH601688 132 8  6.06% 115 3  2.61% 97 5  5.15% 
SH601901 269 22  8.18% 187 9  4.81% 146 8  5.48% 
SH601169 102 20  19.61% 79 5  6.33% 43 5  11.63% 
SH601328 289 11  3.81% 68 3  4.41% 36 2  5.56% 
SH601628 81 10  12.35% 84 4  4.76% 42 3  7.14% 

(continued on next page) 

S. Song and H
. Li                                                                                                                                                                                                      



NorthAmericanJournalofEconomicsandFinance67(2023)101923

10

Table 5 (continued ) 

Method Stock 5 min 10 min 20 min 

Number of 
jumps 

Number of 
Systematic Co-jumps 

Ratio of Systematic 
Co-jumps 

Number of 
jumps 

Number of 
Systematic Co-jumps 

Ratio of Systematic 
Co-jumps 

Number of 
jumps 

Number of 
Systematic Co-jumps 

Ratio of Systematic 
Co-jumps 

SH601766 99 6  6.06% 85 2  2.35% 53 4  7.55% 
SH601818 123 13  10.57% 101 6  5.94% 88 4  4.55% 
SH600111 193 13  6.74% 60 4  6.67% 30 1  3.33% 
SH600837 258 16  6.20% 151 10  6.62% 107 2  1.87% 
SH601088 76 8  10.53% 54 6  11.11% 30 3  10.00% 
SH601186 128 12  9.38% 112 11  9.82% 88 3  3.41% 
SH601336 80 10  12.50% 59 4  6.78% 38 4  10.53% 
SH601398 70 6  8.57% 55 6  10.91% 49 3  6.12% 
Average 192 14  8.56% 140 7  5.73% 76 5  7.25%  

Original 
TOD 

SH000016 309   133   64   
SH600009 381 80  21.00% 173 31  17.92% 89 11  12.35% 
SH600016 365 116  31.78% 191 48  25.13% 110 27  24.54% 
SH600028 404 53  13.12% 223 20  8.97% 133 14  10.52% 
SH600030 330 109  33.03% 165 55  30.30% 83 27  32.53% 
SH600036 340 112  32.94% 168 50  29.76% 125 32  25.60% 
SH600048 331 65  19.64% 185 37  20.00% 101 17  16.83% 
SH600050 287 36  12.54% 177 25  14.12% 226 15  6.63% 
SH600104 338 89  26.33% 189 46  24.34% 95 16  16.84% 
SH600519 328 62  18.90% 167 27  16.17% 108 15  13.88% 
SH601166 341 114  33.43% 198 66  33.33% 115 36  31.30% 
SH600029 321 28  8.72% 236 15  6.36% 230 15  6.52% 
SH600887 304 64  21.05% 154 27  17.53% 100 19  19.00% 
SH601688 374 54  14.44% 229 25  10.92% 200 15  7.50% 
SH601901 395 61  15.44% 210 26  12.38% 128 14  10.94% 
SH601169 314 64  20.38% 202 41  20.30% 237 20  8.44% 
SH601328 335 93  27.76% 176 44  25.00% 100 28  28.00% 
SH601628 318 53  16.67% 179 33  18.44% 311 20  6.43% 
SH601766 344 67  19.48% 206 40  19.42% 134 25  18.66% 
SH601818 402 53  13.18% 221 20  9.05% 133 14  10.53% 
SH600111 315 81  25.71% 153 35  22.88% 109 23  21.10% 
SH600837 268 37  13.81% 193 30  15.54% 314 14  4.46% 
SH601088 292 55  18.84% 282 26  9.22% 247 9  3.64% 
SH601186 326 47  14.42% 219 28  12.79% 173 18  10.40% 
SH601336 364 52  14.29% 179 23  12.85% 104 14  13.46% 
SH601398 308 41  13.31% 239 21  8.79% 347 16  4.61% 
Average 336 67  20.01% 194 34  17.66% 158 19  14.59%  
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portfolio and randomly selected 25 constituent stocks from those 50 stocks with complete high-frequency trading data as empirical 
objects. If there is an overlap between the jump intervals of the constituent stocks and the portfolio, then a systematic co-jump may 
occur. Table A1 in Appendix A lists the code that use to refer to these types of co-jumps in the following text. Cojumps that occurred 
during the 245 trading days of 2014 are mainly examined. All the data can be obtained from https://www.kaggle.com/datasets/ 
shijiasong/price-data-of-sh50-in-2014. 

In this section, we first use the results of the traditional BNS test to directly show the drawbacks of using a fixed sampling frequency 
and a fixed sampling starting point in the jump test. Then, we compare the empirical results of using the traditional s-BNS, L-M and 
TOD methods to those of using their improved versions (see Fig. 5). 

4.1. Results of the BNS test 

We use sampling frequencies of 5 min, 10 min and 20 min and apply the BNS test to these datasets. The significance level is set to 
5%. The number of heterogeneous jumps and the proportion of systematic co-jumps are displayed in Table 3. It is worth noting that 
BNS can only support detection at the daily level. 

Table 3 indicates that when the sampling interval is large, such as 20 min, it is usually difficult to identify a jump through BNS, 
which results in a large level of bias. Even under 5-minute or 10-minute sampling, the number of jumps detected in any stock or index 
does not exceed 20, and nearly half of the stocks show no evidence of co-jumps. Among all stocks, the average ratio of systematic co- 
jumps is less than 10% under these three sampling frequencies. The estimation bias can be explained through the persistence of jumps; 
if a jump occurs in both the index and constituent stock due to the same financial event on a specific day, but due to variations in 
persistence and starting point, they can hardly be detected through BNS since it is based on a fixed sampling pattern. This result drives 
the idea of considering jump persistence to adjust the estimation bias of the co-jump. 

Under each sampling frequency in set {1,2,3, 4,5, 6, 8,10,12,15, 16,20,24,30}(minutes), we adopt two methods to perform the 
BNS test on SSE 50. One is to consider the first minute as the fixed sampling starting point, and the other is to consider each point in 
each sampling interval as the starting point. Table 4 shows the results of jump tests using these two different methods. 

It can be seen from the table that at the same sampling frequency, the number of jumps detected by the BNS using a traversed 
starting point is relatively larger. The data displayed in Table 3 and Table 4 imply that both the sampling frequency and the sampling 
starting point affect the results of the jump test. 

4.2. Results of the traditional jump test procedure 

We apply traditional s-BNS, L-M and TOD to check the occurrence of co-jumps in 25 constituent stocks at the intraday level. Table 5 
lists the results. The sampling frequencies are also chosen as 5 min, 10 min and 20 min. 

Table 5 suggests that the higher the sampling frequency is, the more jumps that are detected and the higher the probability of 
systematic co-jumps in constituent stocks. Compared with the L-M method, s-BNS and TOD can be used to identify more jumps and 
systematic co-jumps. Under the 5-minute sampling frequency, approximately 20% of systematic co-jumps can be detected in individual 
stocks by TOD, but LM can only detect an average of 8.56% of the systematic co-jumps. Generally, if a jump is assumed to occur 
instantaneously, the proportion of systematic co-jumps in the constituent stocks is relatively low. The robustness of these results is also 
largely affected by the sampling frequency. 

4.3. Results of the improved jump test procedure 

Before performing the improved jump test procedure, the minimum sampling unit needs to be specified. The reason for empha-
sizing the so-called “minimum” is that when the sampling interval is large, jumps in opposite directions may occur within this time 
window, so that individual jumps in the opposite direction can be ignored and only persistent jumps with long time spans of persistence 
are identified, which somewhat underestimates the total number of jumps and overestimates the average time of jump persistence. 
This phenomenon can be found in the empirical data, and we illustrate it in Fig. 3 as an example. Fig. 3 displays the results of the s-BNS 
jump test for sh600104 from 9:30 a.m. to 10:00 a.m. on November 17, 2014. Using a sampling frequency of 2 min, a total of four 
consecutive jumps are identified, of which the first two are in the same direction. The third and the fourth are positive and negative 
jumps, respectively. According to the definition of jump persistence in this paper, the first two jumps can be regarded as a negative 
jump with a persistence time of 4 min and labeled jump B, while the last two jumps are labeled jumps C and D with a persistence time of 
2 min each. At a sampling frequency of 5 min, a total of two jumps are identified, and these two jumps are consecutive and in the same 
direction, which means that we identify a negative jump A with a persistence time window of 10 min. By comparing the results at these 
two sampling frequencies, we find that when the minimum sampling interval increases, the time of persistence of individual jumps 
may be exaggerated to some extent, and the number of identified jumps is reduced. Accordingly, the number of co-jumps may be 
exaggerated because the larger time window of persistence creates a higher possibility of overlap with jumps across other assets. 

Therefore, we choose a minimum sampling interval ranging from 1 to 5 min. We estimate the average time of jump persistence of 
the 25 constituent stocks in the SSE 50 using the improved jump tests mentioned in Section 2.4. We show the density plots of the 
average time of jump persistence based on 25 stocks under each of the three methods when the minimum sampling unit ranges from 1 
min to 5 min. It is obvious that the lower that the sampling frequency is, the longer the average time of jump persistence will be, and 
the more homogeneous the value of the estimates. For example, when a 5-min sampling frequency is adopted, the average time of jump 
persistence is either 5 min or 10 min. As the sampling frequency increases, the average time of jump persistence gradually decreases 
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and shows a tendency to converge with the results from using a minimum sampling frequency of 2 min. The reason that the results do 
not converge to that of the 1-minute sampling frequency is probably that the high sampling frequency causes considerable noise that 
become identified as jumps, and these are mostly discrete and occur in different directions. Since only jumps in the same direction that 
occur continuously can be considered to be persistent jumps, the average time of jump persistence decreases significantly. Considering 
the convergence and the possible noise caused by the 1-min sampling frequency, we finally chose 2 min as the minimum sampling unit. 

The involved parameters are consistent with the values used in the traditional L-M and TOD. Table 6 lists the results of the improved 
s-BNS, improved L-M and improved TOD methods. 

Table 6 reveals that the improved test procedure based on the assumption that a jump has persistence can identify more jumps than 
the traditional test procedures. At the intraday level, the number and proportion of systematic co-jumps between constituent stocks 
and the index also increase greatly. Compared with the results obtained by applying the traditional methods with a sampling frequency 
of 5 min, the average proportion of co-jumps detected by the improved s-BNS is increased by approximately 13%. The improved L-M 
and the improved TOD methods only increase the average detection rate of systematic co-jumps by approximately 2% and 1.8%, 
respectively, over that of traditional tests. Although the improved method increases the sampling frequency to a high level, the ratio of 
co-jumps does not increase to a corresponding degree since it only regards consecutive jumps in the same direction as a single jump and 
regards jumps whose time windows of persistence overlap as co-jumps. This means that the improved method can increase the pro-
portion of detected co-jumps to a certain degree while simultaneously reducing the influence of market microstructure noise on co- 
jump detection when using a high sampling frequency. However, the proportion of intraday systematic co-jumps detected by the 
improved L-M and TOD is still lower than that of intraday systematic co-jumps detected by the improved s-BNS. The proportion of 
systematic co-jumps obtained by the improved s-BNS reaches approximately 30% on average, which indicates that co-jumps and even 
systematic co-jumps are not sparse. Since the improved s-BNS method more accurately identifies co-jumps in simulation experiments, 
the empirical test results of the improved s-BNS may be more convincing, which indicates that systematic risk occurs more frequently 
than previously thought. 

To make the test results of the improved procedures and those of the traditional methods more comparable, we attempted to use the 
5-min minimum sampling unit as well, and the details are displayed in Table A2 of the Appendix. The results indicate that the number 
of jumps identified by the 5-minute minimum sampling interval decreases relative to that of the 2-minute minimum sampling interval, 
yet the number and proportion of systematic co-jumps increases, which we consider to be less convincing based on the above theo-
retical analysis. Hence, these results are only shown in the Appendix as a reference. 

5. Conclusion 

We begin with the phenomenon that jumps have a certain persistence and reveal the limitations of traditional jump tests, such as 

Table 6 
Co-jump identified by the improved test procedure.  

Stock Improved s-BNS Improved LM Improved TOD 

Number 
of jumps 

Number of 
Systematic 
Co-jumps 

Ratio of 
Systematic 
Co-jumps 

Number 
of jumps 

Number of 
Systematic 
Co-jumps 

Ratio of 
Systematic 
Co-jumps 

Number 
of jumps 

Number of 
Systematic 
Co-jumps 

Ratio of 
Systematic 
Co-jumps 

SH000016 122   263   406   
SH600009 209 40  19.14% 356 27  7.58% 376 81  21.54% 
SH600016 314 66  21.02% 473 28  5.92% 414 145  35.02% 
SH600028 399 83  20.80% 689 16  2.32% 439 51  11.62% 
SH600030 176 144  81.82% 249 48  19.28% 353 164  46.46% 
SH600036 304 54  17.76% 401 40  9.98% 336 130  38.69% 
SH600048 387 93  24.03% 526 31  5.89% 239 76  31.80% 
SH600050 412 113  27.43% 533 13  2.44% 381 32  8.40% 
SH600104 266 145  54.51% 331 53  16.01% 448 114  25.45% 
SH600519 312 70  22.44% 459 44  9.59% 364 100  27.47% 
SH601166 402 83  20.65% 518 49  9.46% 406 138  33.99% 
SH600029 354 96  27.12% 487 29  5.95% 234 25  10.68% 
SH600887 225 87  38.67% 323 38  11.76% 345 89  25.80% 
SH601688 424 67  15.80% 587 42  7.16% 323 35  10.84% 
SH601901 289 122  42.21% 367 73  19.89% 480 70  14.58% 
SH601169 364 65  17.86% 449 99  22.05% 208 47  22.60% 
SH601328 267 98  36.70% 296 23  7.77% 439 122  27.79% 
SH601628 199 78  39.20% 514 66  12.84% 205 32  15.61% 
SH601766 287 68  23.69% 376 53  14.10% 360 68  18.89% 
SH601818 354 72  20.34% 404 49  12.13% 418 52  12.44% 
SH600111 236 86  36.44% 288 31  10.76% 380 107  28.16% 
SH600837 113 66  58.41% 564 40  7.09% 138 23  16.67% 
SH601088 197 51  25.89% 477 53  11.11% 208 26  12.50% 
SH601186 199 59  29.65% 530 51  9.62% 230 33  14.35% 
SH601336 208 58  27.88% 304 39  12.83% 295 49  16.61% 
SH601398 572 64  11.19% 572 67  11.71% 129 23  17.83% 
Average 292 81  30.43% 436 44  10.61% 329 73  21.83%  
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BNS, s-BNS, L-M, and TOD, in detecting these jumps. Since the common rule used to define co-jumps is also based on the assumption of 
jump synchronization, we believe that the existing scheme of detecting co-jumps underestimates systematic risks to a large extent, 
which in turn poses a challenge to risk management. To improve the procedure of identifying co-jumps, on the one hand, we improve 
the tests to allow for the detection of jumps with persistence at both the daily and intraday levels. On the other hand, we extend the 
coexceedance rule for defining co-jumps (Gilder et al., 2014) to make it more consistent with reality. 

We conduct a simulation experiment to compare the accuracy of the traditional jump test procedure and the improved jump test 
procedure in determining co-jumps. The results show that the improved jump test procedure has much higher accuracy than the 
traditional jump test procedure, with the improved s-BNS method showing the relative best performance. We then regard the Shanghai 
Stock Exchange 50 Index as a proxy of the portfolio and check the frequency of systematic co-jumps in its 25 constituent stocks. The 
empirical results show that the traditional s-BNS, TOD, and L-M methods cannot identify jumps well when using certain fixed sampling 
frequencies and starting points. At the intraday level, with a sampling frequency of 5 min, the average proportions of co-jumps detected 
by the traditional test procedure are approximately 20% at most. While the improved s-BNS detects approximately 30% of systematic 
co-jumps on average in these constituent stocks, the improved TOD and the improved L-M also detect more systematic co-jumps than 
the traditional TOD and L-M, which indicates that co-jumps and even systematic co-jumps are not sparse at all, and current jump test 
procedures generally underestimate risk. 

This study demonstrates the persistence of jumps and the effectiveness of jump tests that consider different sampling frequencies 
and starting points. Such a scheme in the detection of co-jumps could improve the estimation accuracy of systematic risk and reveal 
higher nondiversifiable risks between market indices and individual stocks, thereby providing new directions for risk management. In 
the future, on the basis of jump persistence, we also expect to propose a new generation mechanism for co-jumps, which includes 
information regarding their starting point, persistence and amplitude, to further complete related studies. 
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Appendix A  

Table A1 
Empirical objects and their codes.  

Stock Code 

SSE 50 SH000016 
Shanghai International Airport SH600009 
Minsheng Bank SH600016 
Sinopec SH600028 
CITIC Securities SH600030 
China Merchants Bank SH600036 
Poly Real Estate SH600048 
China Unicom SH600050 
SAIC SH600104 
Guizhou Moutai SH600519 
Industrial Bank SH601166 
China Southern Airlines SH600029 
Yili Industrial Group SH600887 
Huatai Securities SH601688 
Founder Securities SH601901 
Bank of Communications SH601328 
China Life Insurance Company SH601628 
CRRC Corporation Limited SH601766 
China Everbright Bank SH601818 
China Northern Rare Earth Group SH600111 
Bank of Beijing SH601169 
Haitong Securities SH600837 
China Shenhua Energy SH601088 
China Railway Construction SH601186 
New China Life Insurance SH601336 
Industrial and Commercial Bank of China SH601398  
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